A Novel Minimally Invasive Technique to Create a Rabbit VX2 Lung Tumor Model for Nano-Sized Image Contrast and Interventional Studies
نویسندگان
چکیده
BACKGROUND The rabbit VX2 lung cancer model is a large animal model useful for preclinical lung cancer imaging and interventional studies. However, previously reported models had issues in terms of invasiveness of tumor inoculation, control of tumor aggressiveness and incidence of complications. PURPOSE We aimed to develop a minimally invasive rabbit VX2 lung cancer model suitable for imaging and transbronchial interventional studies. METHODS New Zealand white rabbits and VX2 tumors were used in the study. An ultra-thin bronchoscope was inserted through a miniature laryngeal mask airway into the bronchus. Different numbers of VX2 tumor cells were selectively inoculated into the lung parenchyma or subcarinal mediastinum to create a uniform tumor with low incidence of complications. The model was characterized by CT, FDG-PET, and endobronchial ultrasound (EBUS). Liposomal dual-modality contrast agent was used to evaluate liposome drug delivery system in this model. RESULTS Both peripheral and mediastinal lung tumor models were created. The tumor making success rate was 75.8% (25/33) in the peripheral lung tumor model and 60% (3/5) in the mediastinal tumor model. The group of 1.0×10(6) of VX2 tumor cells inoculation showed a linear growth curve with less incidence of complications. Radial probe EBUS visualized the internal structure of the tumor and the size measurement correlated well with CT measurements (r(2) = 0.98). Over 7 days of continuous enhancement of the lung tumor by liposomal contrast in the lung tumor was confirmed both CT and fluorescence imaging. CONCLUSION Our minimally invasive bronchoscopic rabbit VX2 lung cancer model is an ideal platform for lung cancer imaging and preclinical bronchoscopic interventional studies.
منابع مشابه
A Minimally Invasive Multimodality Image-Guided (MIMIG) Molecular Imaging System for Peripheral Lung Cancer Intervention and Diagnosis
The once-promising computed tomography (CT) lung cancer screening appears to result in high false positive rates. To tackle the common difficulties in diagnosing small lung cancer at an early stage, we developed a minimally invasive multimodality image-guided (MIMIG) interventional system for early detection and treatment of peripheral lung cancer. The system consists of new CT image segmentati...
متن کاملA minimally invasive multimodality image-guided (MIMIG) system for peripheral lung cancer intervention and diagnosis
BACKGROUND Lung cancer is the leading cause of cancer-related death in the United States, with more than half of the cancers are located peripherally. Computed tomography (CT) has been utilized in the last decade to detect early peripheral lung cancer. However, due to the high false diagnosis rate of CT, further biopsy is often necessary to confirm cancerous cases. This renders intervention for...
متن کاملReal-time computed tomography fluoroscopy-guided solitary lung tumor model in a rabbit
Preclinical studies of lung cancer require suitable large-animal models to allow evaluation and development of surgical and interventional techniques. We assessed the feasibility and safety of a novel rabbit lung cancer model of solitary tumors, in which real-time computed tomography fluoroscopy is used to guide inoculation of VX2 carcinoma single-cell suspensions. Thirty-eight rabbits were div...
متن کاملPercutaneous Ultrasound Guided Implantation of VX2 for Creation of a Rabbit Hepatic Tumor Model
Creation of a VX2 tumor model has traditionally required a laparotomy and surgical implantation of tumor fragments. Open surgical procedures are invasive and require long procedure times and recovery that can result in post-operative morbidity and mortality. The purpose of this study is to report the results of a percutaneous ultrasound guided method for creation of a VX2 model in rabbit livers...
متن کاملRelevance of Rabbit VX2 Tumor Model for Studies on Human Hepatocellular Carcinoma: A MicroRNA-Based Study.
MicroRNAs are small (~22 nt), noncoding RNA molecules that have critical cellular functions in proliferation, differentiation, angiogenesis and apoptosis. miRNA expression profiling has been used to create signatures of solid tumors and, in many cases, it has been shown to correlate with the severity of the disease. The rabbit VX2 tumor model has been used widely to study a number of human canc...
متن کامل